
Operator-valued FPT

These notes were compiled for a reading group presentation, to offer additional material, practice, and
possible motivations for research. These notes haven’t been put through the usual scrutiny, so please suggest
corrections if you see any errors.

The main references used are [Spe98] and [Leh99].

Note that the discussion of operator-valued FPT in [Spe98] emphasises heavily on the amalgamated free
product of algebras, in hopes to build the moment map by patching together the respective moment maps
defined within the free sub-algebras. We do not particularly need such a construction.

1 Recap and motivation

We are now (more than) halfway through the reading group this semester. At this point, let’s look back at
the progress made towards the main goal for the reading group, and review some key takeaways we have
seen so far.

1.1 Recap

Until now, we have been considering (scalar-valued) free probability, mainly through a combinatorial lens.
We have defined, and characterised, free independence in terms of the free moments and also in terms of
the free cumulants. To that end, we have also seen how the free cumulants and the free moments uniquely
determine each other, via some specific convolutions.

We then considered free additive and multiplicative convolutions of free random elements.

Some useful tools we developed have been the study of the NC(n) lattice, the ζ and µ functions defined on
NC(n) × NC(n) (and later expressed as formal power series), the concept of the resolvent, and certain key
transforms of free random elements.

1.1.1 The full Fock space

In this part, we aim to review some important notions about the full Fock space. Let H be some Hilbert
space; we restrict ourselves to the setting where m = dimH < ∞ for simplicity. Let {e1, . . . , em} be an
orthonormal basis for H. The full Fock space on H is the Hilbert space given by

T (H) := CΩ⊕
∞⊕

n=1

H⊗n.

Here, CΩ can be thought of as the stand-in for H⊗0 ∼= C, Ω is called the vacuum vector. Given some v ∈ H,
we define the corresponding creation operator lv ∈ B(T (H)) =: A as a bounded operator such that

lv : Ω 7→ v

lv : ei1 ⊗ . . . ein 7→ v ⊗ ei1 ⊗ . . . ein

It’s convenient to use the shorthand li := lei . Recall also that the adjoint l∗v is the annihilation operator :

l∗v : Ω 7→ 0

l∗v : ei1 7→ Ω

l∗v : ei1 ⊗ . . . ein 7→ ⟨ei1 , v⟩ ei2 ⊗ . . . ein

We defined the vacuum state expectation as τH(T ) := ⟨TΩ,Ω⟩ for all T ∈ A. Then, the pair (A, τA) is a
C∗-probability space, and {li + l∗i }i∈[m] forms a semicircular system in (A, τH).
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1.2 Motivation: the Xfree model

As in [BBvH23], we seek to study asymptotic properties of the noncommutative random matrix model,
defined as follows:

XN = A0 ⊗ IdN +

n∑
i=1

Ai ⊗GN
i .

Here, A0, A1, . . . , An ∈ Md(C)sa, A0 ⪰ 0, and the GN
i are standard Wigner matrices where each matrix entry

is sampled iid from a centred Gaussian distribution with variance 1/N , i.e. GN
i = (gjki )Nj,k=1 ∼iid N (0, 1√

N
).

It follows from the free central limit theorem that, in the limit N → ∞, the XN converge in distribution to

Xfree := A0 ⊗ id +

n∑
i=1

Ai ⊗ si, (1)

where (s1, . . . , sn) is a free semicircular family in some A, as operators on some full Fock space, and id
denotes the identity map in A. We can then interpret Xfree ∈ (Md(C)⊗A, φ), where φ := tr⊗ τH.

It is now of our interest to compute the free moments of this new Xfree object, so we can study asymptotic
properties of the XN . With some effort (apparently from [NS06]; I don’t know the details), we get

φ(X2p
free) =

∑
π∈NC2(2p)

∑
(i1,...,i2p)∼π

tr[Ai1 . . . Ai2p ],

where (i1, . . . , i2p) ∼ π denotes ij = ik if j ∼π k for all 1 ≤ j < k ≤ n. Note that this formula for the free
moments doesn’t have a multiplicative structure with respect to each fixed π ∈ NC(n), and hence, cannot
be factored over the NC(n) lattice as we have been doing until now. As a result, we cannot naturally use
these free moments to determine the corresponding cumulants, which in turn, leaves us unable to study any
convolutions, and so on.

The hope now is that, perhaps, choosing φ to be a C-valued functional omits too much structure. We then
consider preserving some of the matrix structure of Xfree and developing a new, but similar, line of FPT
accordingly.

2 Operator-valued FPT

The main takeaway from this section should be that operator-valued FPT replaces almost every instance of
maps to C with an analogous map to B, where B is some arbitrary unital C∗-algebra. When in doubt, or in
need of additional examples, it may be helpful to consider the case B = C (which retrieves the scalar-valued
FPT) or B = Mm(C) (for any fixed m).

This section roughly follows the same order in which we approached scalar-valued FPT, and is organised as
follows. We begin with some motivation and basic definitions, before defining what shall be our operator-
valued moment and cumulant maps, defined with respect to the NC(n) lattices as any good free probability
theorist should do. Next, we prove that these operator-valued moments and cumulants are indeed multiplica-
tive (to be defined soon), and hence satisfy our problem with the φ(X2p

free) moments earlier. Immediately
capitalising on this, we start defining and operator-valued freeness and ∗-distributions, which we shall use
to end the section with introducing all the key transforms.

2.1 Motivation

We derive inspiration from the conditional expectation map in classical probability theory. Indeed, suppose
X1, . . . , Xt are some non-commutative (classical) random variables, e.g., we can consider them to be matrices.
Then, upon conditioning on X1, we note the following:

• E[X1|X1] = X1;

2 of 10



2.2 Definitions Operator-valued FPT

• E[X1X2 . . . Xt|X1] = X1E[X2 . . . Xt|X1] ̸= E[X2 . . . Xt|X1]X1;

• For any polynomial p, E[X1p(X2, . . . , Xt)X1|X1] = X1E[p(X2, . . . , Xt)|X1]X1.

With these observations in hand, we seek to define a free analogue of conditional expectation which satisfies
equivalent statements in FPT.

2.2 Definitions

In what follows, suppose that B is always some arbitrary finite-dimensional unital C∗-algebra with unit
1B ∈ B.

Definition 2.1 (Algebra over B). A ∗-algebra A is said to be an algebra over B when B ⊆ A is a sub-algebra
of A.

In particular, when given an algebra over B, note that B will remain closed under multiplication and adjoint.
We shall usually only consider the case where A itself is unital C∗-algebra, with unit 1A ∈ A.

Example 2.2. Consider B ∼= C and A = M2(C), where B consists of all matrices where all entries, except

the top-left entry, are 0, i.e., B =

{[
b 0
0 0

]
: b ∈ C

}
. Clearly, both A and B are unital C∗-algebras and B

is a sub-algebra of A, so A is an algebra over B. The respective units are 1B =

[
1 0
0 0

]
and 1A = Id2.

Warning! During the presentation, I said that 1B = 1A. This is clearly false, as shown in the above
example!

Note that, for any algebra A over B, we have an inclusion map ι : B ↪→ A. However, for any b ∈ B, we shall
overload notation to also write b ∈ A when referring to the element ι(b) ∈ A.

With the following proposition as a sanity check, we remark that when B ∼= C as a C∗-algebra, we retrieve
the scalar-valued setting.

Proposition 2.3. Any B-functional φ is unital, i.e., φ(1A) = 1B.

Proof. Let b ∈ B be arbitrary. Then, b = φ(b) = φ(b1A) = bφ(1A). Since this holds for all b ∈ B, the only
possibility is φ(1A) = 1B . ■

We make one additional definition, as follows.

Definition 2.4 (B-functional). A B-functional on A is a linear map φ : A → B such that φ(b) = b, for all
b ∈ B, and φ(b1ab2) = b1φ(a)b2, for all b1, b2 ∈ b and a ∈ A.

We say that such a map φ is a free conditional expectation conditioned on B, or a B-valued expectation.
Indeed, we verify the following, satisfied it meets our picky demands we set forth:

• φ(b) = b; and φ(ba1 . . . atb) = bφ(a1 . . . at)b;

• φ(bp(b, a1, . . . , t)b) = bφ(p(b, a1, . . . , at))b

Accordingly, we can now define a B-valued ∗-probability space.

Definition 2.5 (B-valued ∗-probability space). This refers to a pair (A,φ) where A is a ∗-algebra over B
and φ : A → B is a positive B-functional.

Corollary 2.5.1. When B ∼= C as a C∗-algebra (equiv., when dimB = 1), we retrieve scalar-valued FPT.

Here, we say φ : A → B is positive in the conventional sense, i.e., for all a ∈ A, φ(a∗a) = b∗b for some b ∈ B.

Consider the following examples for such a B-valued probability space.

Example 2.6. Let (A, τ) be a C∗-probability space. Consider Md(A), the set of all d×d matrices with entries
in A, which is itself a C∗-algebra under the standard operations. Note that B ∼= Md(C) is a C∗-subalgebra
of Md(A). Upon verifying that the map φ : Md(A) → Md(C) given by φ := Idd ⊗ τ is a B-functional, it
follows that (Md(A), Idd ⊗ τ) is a B-valued C∗-probability space.
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Example 2.7. In particular, if A is a matrix algebra Mn(C) and τ = tr is the normalised trace on A, then
the above construction yields the conditional expectation given by the partial trace φ = Idd ⊗ tr.

And, perhaps most relevant for our purposes, we momentarily revisit our good friend, the Xfree model.

Example 2.8 (The Md(C) ⊗ A model). Note that Md(C) ∼= Md(C) ⊗ {1A} is a C∗-subalgebra of Ad :=
Md(C) ⊗ A. Moreover, the map φ := Idd ⊗ τA gives a Md(C)-functional. Thus, the space (Ad, φ) is the
operator-valued model for Xfree that we are interested in.

An interesting observation here is that you can compose together this notion of B-valued conditional expec-
tations, in the following sense.

Remark 2.9. Let (B,ϕ) be a C-valued C∗-probability space, where C is another unital C∗-algebra, and let
(A,φ) be a B-valued ∗-probability space. Then, (A, ϕ ◦ φ) is a C-valued ∗-probability space.

This is analogous to the tower property of classical conditional expectations; e.g., if X1, X2, X3 are classical
random variables, then

E[X3|X1] = E[E[X3|X2]|X1].

I don’t know if it is useful in FPT or random matrix theory, but it seems like a result that is often unnoticed.

2.3 Moments and cumulants

The goal here is simple: we are interested in computing φ(X2p
free) in a structure-preserving way. To do so,

we build up the moment and cumulant formulae in this generalised setting.

We seek to define our moment and cumulant maps as B-functionals on
⊔

n∈N NC(n)× A⊗n (up to a minor
inconsistency, explained soon). By explicitly considering their action on non-crossing partitions, just like for
scalar-valued FPT, we are able to guarantee that this definition admits a factoring over the NC(n) lattices.
Recall that, when we mention a factoring, we mean to say that the functional respects the bracketing provided
by any π ∈ NC(n).

However, to do so, we must first consider what exactly it means for a B-functional to be multiplicative, and
thus admit such a factoring. Section 2.3.1 serves this purpose, but can be skipped if you wish to proceed
directly to defining moments and cumulants.

2.3.1 Multiplicative functionals

Before we proceed any further, note that the conditional expectation imposes a strange requirement, i.e.
φ(ba) = bφ(a) and φ(ab) = φ(a)b. Clearly, then, when we consider a tensor product structure, we should
have the flexibility to “move around” products by b. For this purpose, we define the tensor product with
respect to ⊗B in Section 4.1, but it can be waived away as just some extra notation.

The goal now is to characterise all B-functionals f̂ :
⊔

n∈N NC(n) × A⊗Bn such that f̂(π) : A⊗Bn respects
the bracketing of π. To that end, we provide the following recursive definition.

Definition 2.10 (Multiplicative B-functional). Let f (n) : A⊗Bn → B be arbitrary B-functionals, for n ∈ N.
We say f̂ :

⊔
n∈N NC(n)×A⊗Bn is multiplicative, using f (n), when it obeys:

1. (base case.) f̂(∅)[b] = b;

2. (recursive case.) Consider f̂(π)[a1 ⊗B . . .⊗B an], where π ∈ NC(n) and n > 0. Let V = [k, ℓ] denote
the leftmost interval in π. Then,

f̂(π)[a1 ⊗B . . .⊗B an] = f̂(π \ V )[a1 ⊗B . . .⊗B ak−1 ⊗B f (ℓ−k+1)(ak ⊗B . . .⊗B aℓ)aℓ+1 ⊗B . . . an]

Consider the following computation, which illustrates why we call such a functional multiplicative.
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Example 2.11. Let π = {{1, 4}, {2, 3}} ∈ NC(4); then its leftmost interval is V = [2, 3], and π \ V =
{1, 4} ∈ NC(2). Consider an arbitrary family f (n) of B-functionals. Then, for a ∈ A:

f̂ [π](a⊗B a⊗B a⊗B a) = f̂ [π \ V ](a⊗B f (2)(a⊗B a)a)

= f̂ [∅](f (2)(a⊗B f (2)(a⊗B a)a))

= f (2)(a⊗B f (2)(a⊗B a)a)

In particular, as shown above f̂ [π] respects the bracketing of π, in this example.

We claim (without proof) that such a bracketing always occurs with our definition for f̂(π) : A⊗Bn → B,
for any π ∈ NC(n), and any n ∈ N, which justifies the multiplicative naming.

2.3.2 Back to moments and cumulants

Definition 2.12 (Operator-valued moments). The multiplicative moment functional φ̂ is determined by
φ(n), where (for n ≥ 2):

φ(1)(a) := φ(a) (2)

φ(n)(a1 ⊗B . . .⊗B an) := φ(a1 . . . an) (3)

At this point, recall that we characterised scalar-valued free cumulants using the ζ function; we shall repeat
the same definition for B-valued cumulants also. As a reminder, we previously defined the function ζ :
⊔nNC(n)×NC(n) → C as the indicator function for intervals, i.e.,

ζ(σ, π) =

{
1, σ ≤ π

0, else

Recall that ζ has a convolutive inverse given by the Möbius function µ : ⊔nNC(n)×NC(n) → C.

Definition 2.13 (Operator-valued cumulants). Given B-valued moments ϕ̂, we define the corresponding
cumulants as κ̂ given by κ(n) : A⊗Bn → B where

κ̂ := φ̂ ⋆ µ.

Here, for any π ∈ NC(n), the convolution is given by

(φ̂ ⋆ µ)(π) :=
∑
σ≤π

ϕ̂(σ)µ(σ, π) (4)

The ⋆-convolution as given in Equation (4) can be generalised for any f̂ and any function η : ⊔nNC(n) ×
NC(n) → C. Moreover, this yields the first half of our operator-valued moment-cumulant formulae. The
other half is obtained via the following corollary.

Corollary 2.13.1. Given B-valued cumulants κ̂, the corresponding B-valued moments are φ̂ = κ̂ ⋆ ζ.

Proof. Recall that µ ∗ ζ = id, and further observe that the ⋆-convolution is “associative” in the sense that
(f̂ ⋆ ν1) ⋆ ν2 = f̂ ⋆ (ν1 ∗ ν2). ■

By definition, then, the B-valued moments and cumulants are multiplicative, as desired. Moreover, the same
moment-cumulant formulae from scalar-valued FPT still hold! We shall soon see that this is a recurring
theme in operator-valued FPT, and that most of the same characterisations and functional equations from
scalar-valued FPT carry over.

For instance, the same functional equation between the moments and cumulants is still true, as follows.
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Theorem 2.14. (Functional relation for moments and cumulants) Given B-valued moments φ̂ and cumu-
lants κ̂, define the corresponding formal power series M and C as

M(a) = 1 +

∞∑
n=1

φ(n)(a⊗n)

C(a) = 1 +

∞∑
n=1

κ(n)(a⊗n).

Then, we have the functional relation C[aM(a)] = M(a).

We omit the proof here, since it follows by direct computation, and is very similar to the proof of the
functional relation for scalar-valued moments and cumulants.

With all these tools regarding B-valued moments and cumulants in hand, we are now ready to define what
it means for two B-valued random variables a, a′ ∈ A to be freely independent.

2.4 Freeness

The following serves as both a definition and a characterisation theorem for B-valued free independence.
As such, while it is labelled as a definition here, there are several nontrivial steps involved in justifying the
result, which we shamelessly sweep under the rug.

Definition 2.15 (Free independence). Given unital C∗-sub-algebras (Ai)i∈Λ ⊆ A such that each Ai is also
a C∗-algebra over B, we say the (Ai)Λ are free when, for al n ∈ N, φ(a1 . . . an) = 0 ∈ B whenever:

1. aj ∈ Aij for all 1 ≤ j ≤ n;

2. φ(aj) = 0 ∈ B for all 1 ≤ j ≤ n; and

3. all neighbouring elements are from different sub-algebras.

Equivalently, the (Ai)Λ are free when all their mixed B-valued cumulants vanish. In other words, for all
n ∈ N, κ(n)(a1 ⊗B . . .⊗B an) = 0 if there exist 1 ≤ j < j′ ≤ n such that Aij ̸= Aij′ .

The usual route would be to now consider what the generalisation of a ∗-distribution looks like in the
operator-valued setting. However, as an experiment, it might be less confusing to instead dive straight into
considering the operator-valued transforms instead. This is because the results on matrix concentration and
computing norms only ever use the definitions of the transforms themselves, instead of how they are defined
with respect to (operator-valued) distributions, which takes some work to construct.

2.5 Transforms

We introduce all relevant transforms as formal power series objects, or functions thereof. For starters, recall

that we defined the Cauchy transform Ga(z) in scalar-valued FPT as Ga(z) =
1
z

∑∞
n=0

φ(an)
zn , where z ∈ C+.

Then, note that:

Ga(z) =
1

z

∞∑
n=0

z−nφ(an) = z−1
∞∑

n=0

φ((z−1a)n) = z−1φ(
∑∞

n=0(z
−1a)n) = z−1φ((1A − z−1a)−1),

where the last result follows from a C∗-algebraic analogue of the convergence of an infinite geometric series.
Thus, we could express the Cauchy transform as the expectation of the resolvent:

Ga(z) = φ(z−1(1A − z−1a)−1) = φ((z1A − a)−1)).

We choose to co-opt this definition, since it yields a natural generalisation by replacing z with some operator,
as follows.

Definition 2.16 (Operator-valued Cauchy transform). Given a B-valued ∗-probability space (A,φ), and
a ∈ A, we define Ga(b) := φ((b− a)−1) ∈ B.
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In other words, we have defined the operator-valued Cauchy transform as a map Ga : B → B. However,
(as we shall soon see) it will be more practical to restrict it to Ga : H+(B) → Ga(H+(B)), where H+(B)
denotes the positive cone of B (analogous to the upper half-plane C+ for C).

Continuing with co-opting our definitions from scalar-valued FPT, we now define the moment-transform
G̃a(b), which corresponds to the previous moment transform Ma(z).

Definition 2.17 (Operator-valued moment transform). For a ∈ A, we define G̃a(b) :=
∑∞

n=0 φ(b(ab)
n).

At first glance, this definition seems non-intuitive. However, the idea is that we defined G̃a so that the
functional relation G̃a(b) = Ga(b

−1) carries over. And indeed it does!

Lemma 2.18. Ga and G̃a are related by the functional equation Ga(b
−1) = G̃a(b).

Proof. We once again sweep all the convergence results under the rug, so

G̃a(b) :=

∞∑
n=0

φ(b(ab)n)

∞∑
n=0

bφ((ab)n) = b ·
∞∑

n=0

φ((ab)n) = b · φ(
∑∞

n=0(ab)
n) = b · φ((1A − ab)−1)

= φ(b(1A − ab)−1) = φ((b−1)−1(1A − ab)−1) = φ((b−1 − a)−1) =: G(b−1).

The last equality uses the fact that (a1a2)
−1 = a−1

2 a−1
1 for any invertible a1, a2 ∈ A. We also quietly assumed

that b ∈ B was itself invertible with a well-defined inverse b−1. ■

Remark 2.19. Lehner flips the definitions around, interestingly. He refers to G̃a as the Cauchy transform,
and Ga as the “G-transform”. I found this to be less intuitive so I avoided it.

The main stars of the transforms are, arguably, the R- and K-transforms. Recall that we previously used
Ra(z) =

∑∞
n=0 κn+1(a)z

n, so we co-opt this by replacing z with b, as follows.

Definition 2.20 (R-transform). Given a ∈ A, define Ra(b) :=
∑∞

n=0 κ
(n+1)(a⊗B ba⊗B . . .⊗B ba︸ ︷︷ ︸

n times

).

Consequently, define Ka(b) := b−1 +Ra(b), where we again assume b−1 exists.

Just as before, the R-transform linearises free additive convolution.

Lemma 2.21. Given self-adjoint a, a′ ∈ (A,φ) for a B-valued ∗-probability space, we have that Ra+a′(b) =
Ra(b) +Ra′(b), for all b ∈ B.

The other important takeaway from these definitions, though, is that the functional relation G[K(z)] = z =
K[G(z)] carries over, in some capacity.

Remark 2.22. Assuming “nice enough conditions”, Ga[Ka(b)] = b = Ka[Ga(b)].

This is currently an incredibly vague statement, but as Lehner and Speicher both point out, the aforemen-
tioned nice enough conditions still allow a great deal of flexibility. We revisit this remark as a proper theorem
in the next section.

With that, the only other preliminaries of FPT yet to be considered is the concept of distributions.

Remark 2.23. The next subsection, on distributions, is (in hindsight) not relevant for our current purposes.
However, they are necessary in order to have a complete treatment of B-valued FPT. Moreover, it might still
be worthwhile reading about them, as they seem to be important for generalising the discussion concerning
spectra of polynomials of free variables to the operator-valued setting.

2.6 Distributions

Observe that, in the scalar-valued setting, we can consider the ∗-distribution µ for some fixed a ∈ (A,φ)
as a map C ⟨z, z∗⟩ → C, which determines all the moments of µ via the action of φ on the corresponding
polynomial in a ([NS06] p.26).
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Example 2.24. The distribution for a standard semi-circular element s is given by µ : C ⟨z, z∗⟩ → C where,
for example, µ(z∗) = µ(z) = 0, µ(z2) = µ(z∗z) = µ((z∗)2) =

We aim to do the same for operator-valued FPT, and define a ∗-distribution as a map resembling “B ⟨X⟩ →
B”. First, we fix some self-adjoint (or, at least, normal) a ∈ (A,φ).

Definition 2.25 (Noncommutative polynomial algebra). Given a unital ∗-algebra B, define B ⟨X,X∗⟩ :=
C ⟨X⟩ ∗B to be the space of all B-linear non-commuting polynomials in a variable X.

One way to visualise B ⟨X⟩ is by thinking of elements b ∗ p(X,X∗) as words w in our space. Then, B ⟨X⟩
consists of (the closure of) all strings of the form w1 · w2 and w1 + w2, where (b1 ∗ p1) · (b2 ∗ p2) is a formal
product.

With that in hand, the only other preliminary we must define is the notion of a character with respect to a
fixed a ∈ A. Informally speaking, this refers to a mapping which replaces all instances of X in w ∈ B ⟨X⟩
with a, and replacing X∗ with a∗ = a. The below definition formalises this intuition.

Definition 2.26 (Characters). The character τa : B ⟨X⟩ → A is the unique map such that:

1. τ(b) := b for all b ∈ B;

2. τ(X) := a and τ(X∗) := a∗ = a;

3. τ(w1 · w2) = τ(w1)τ(w2) for all w1, w2 ∈ B ⟨X⟩.

Example 2.27. Given a character τa, we have τa(b ∗X2) = ba2, τa(b ∗ (X∗X)) = ba∗a, and so on.

Example 2.28 (The (Md(C)⊗A, Idd⊗τH) setting). Let Ad := Md(C)⊗A, φ := Idd⊗τH, and B := Md(C).

Then, for some self-adjoint a ∈ Ad (e.g. a = Xfree), we have:

τa(X
∗ · (b ∗X2) · (b′)) = (a∗) · (ba2) · (b′1A) = a∗ba2b′.

At this point, we have two maps τa : B ⟨X,X∗⟩ → A and φ : A → B. The next step should seem natural!

Definition 2.29 (Operator-valued ∗-distribution). The distribution of a ∈ A is defined as νa : B ⟨X⟩ → B
given by νa := φ ◦ τa.

It shouldn’t be a surprise what we define as the free additive convolution of ∗-distributions now!

Definition 2.30. Let ⊞ denote the operation such that νa ⊞ νa′ := νa+a′ .

By pulling back the R-transform as a transform with respect to distributions, we get:

Corollary 2.30.1. The R-transform acts as Rν⊞ν′(b) = Rν(b) +Rν′(b).

We extend this definition of a B-valued ∗-distribution for a single element a to that of a joint distribution
corresponding to (a1, . . . , am). This would entail similar definitions for B ⟨X1, . . . , Xm, X∗

1 , . . . , X
∗
m⟩, then

defining the character τ(a1,...,am), and finally ν(a1,...,am) := φ ◦ τ(a1,...,am).

3 Onwards to analysing Xfree

As a reminder, we are interested in computing ∥Xfree∥ in the C∗-norm for the space Ad := Md(C) ⊗ A,
where (A, τH) is some full Fock space, and (Ad, φ) is defined as in Example 2.28. By definition, note that
Xfree is non-zero and self-adjoint; hence, sp(Xfree) ⊆ R and ∥Xfree∥ = max |sp(Xfree)|.

To that end, using the notation in Equation (1), Lehner noted the following results [Leh99].

Theorem 3.1. Given some non-zero self-adjoint a ∈ Ad, G̃a : H+(B) → Ga(H+(B)) is invertible along the
interval (0, 1

∥a∥ )1B := {s1B : 0 < s < 1
∥a∥}
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Since G̃a(b) is invertible along (0, 1
∥a∥ )1B , it follows that Ga(b) = G̃a(b

−1) is invertible along the interval

(−∞,min sp(a))1B ∪ (max sp(a),∞)1B . Since the K-transform is an inverse for Ga, Lehner’s main idea is
to express the endpoints of the intervals, min sp(a) and max sp(a) in terms of the range of Ka.

For instance, since Ga[Ka(b)] = b, we consider b ∈ B such that Ka(b) ∈ (max sp(a),∞)1B . With some
rewriting, we get:

max sp(a) = inf{s ∈ R | s ∈ (max sp(a),∞)}
= inf{s ∈ R | ∃b ∈ B+ : K(b) = s1B}

A similar infimum argument holds for min sp(a). The rest of [Leh99] is about explicitly computing this
infimum by deriving the K-transform corresponding to Xfree.

4 Miscellaneous notes (not important)

4.1 The tensor product with respect to B

Technically, it’s not A⊗n that we are considering here, after all! Indeed, the usual tensor product A ⊗ A
offers no indication that we wish for elements of B to be able to “be pulled out” to the left or to the right,
like when we defined the conditional expectation!

In other words, we seek to identify a⊗ ba′ and ab⊗a′ to denote the same element in this new tensor product
structure.

Definition 4.1 (⊗B tensor product). We define the tensor product with respect to B as A ⊗B A := (A ⊗
A)/ ∼, where ∼ is an equivalence relation such that, for all a, a′ ∈ A and all b ∈ B, we have

a⊗ ba′ ∼ ab⊗ a′

We can then inductively define A⊗Bn for all n ∈ N, where A⊗B0 := B and A⊗B1 := A.

4.2 The minimal norm

There has been a minor inconsistency hidden in these notes, when we supposed that Xfree ∈ Md(C) ⊗ A.
In a more thorough treatment (as in [Pis03] pp.1-2), we would have defined Md(C)⊗min A as the algebraic
closure of Md(C)⊗A within the space B(Cd ⊗ T (H)).

Upon equipping Md(C) ⊗min A with the induced C∗-norm ∥·∥min, we can take Xfree ∈ Md(C) ⊗min A, and
consider ∥Xfree∥min, which is indeed the notation used by Lehner in [Leh99].

4.2.1 The free additive convolution

The following is an alternative formulation of the transforms and additive convolution, as described in Section
10.4.2 of [MS17]). Perhaps this could be better suited for understanding? In this formulation, we forego
defining the moment transform entirely.

[TODO: Translate the theorem into our notation.]
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