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Preliminaries

Allocation problems

Problem statement
You have some quantity, say m units, of some resource,

and you
have n people to allocate the resource to. You wish to maximize a
particular objective through this allocation.

Definitions
1 Divisibility whether the resource can be divided, and, if

applicable, the finest refinement possible
2 Homogeneity whether all parts of the resource are worth the

same to each person
3 Allocation is a (perhaps partial) partitioning of the available

resource amongst (a subset of) the population
4 Objective we shall take this to be the net worth of the

allocation, subject to fairness
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Preliminaries

Online algorithms

Intuitive idea
A model of algorithms accepting an input instance given as an
unknown sequence of inputs (agents, in this case).

After each
input agent is presented, the algorithm makes a decision
(irrevocably, in this case).
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(Minimal) online cake-cutting
Defining the problem

Informally...
Congratulations! Today is your birthday so you take a
cake into the office to share with your colleagues at tea
time. However, as some people have to leave early, you
cannot wait for everyone to arrive before you start sharing
(allocate) the cake. How do you proceed fairly?
— Toby Walsh (Online Cake Cutting, 2011)

Simplification

cake → I = [0,1];
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Valuations

Allocation

Cutting

If S is a finite set of closed intervals, then:
1 S is a cutting;
2 ∀[a,b] ∈ S and c ∈ (a,b), the set S ∪{[a,c], [b,c]}\[a,b] is a

cutting.

Allocation
An allocation of the cake I = [0,1] among the set of agents [n] is a
partition of some cutting of {I} into n subsets, A1, . . . ,An.

Simple allocation

An allocation using only n disjoint intervals.
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Valuations

Agent preferences

Valuation
For each j ∈ [n], define the valuation of agent j denoted by
vj : 2

I → R≥0 given by vj(J) =
∫
J fj where fj is a piecewise

continuous value density function, such that, for all j ∈ [n]:

normalized: vj(I ) = 1

additive: for any two closed disjoint sub-intervals X ,Y ,
vj(X ⊔Y ) = vj(X )+ vj(Y )

Set valuation
For a finite set of intervals S , we define, for all j ∈ [n],
vj(S) = ∑[a,b]∈S vj([a,b]); in particular, vj is additive.
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Valuations

Agent preferences

Space of possible valuations

Let C̃ 0 denote the space of piecewise continuous functions on I .
Let V denote the set of possible valuations v = (v1, . . . ,vn) where
vj =

∫
fj , for fj ∈ C̃ 0.

Algorithm output

Given some algorithm Alg for this problem and valuations
v1, . . . ,vn, denote the resulting allocation by
A= (A1, . . . ,An) =Alg(v1, . . . ,vn).
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Valuations

Input model

Complexity

It may take infinite precision to specify a valuation function
without discretisation or other approximations. We will instead
consider the query complexity with the following model.

Robertson-Webb
Two oracles for each j ∈ [n] as follows

1 Evalj(x ,y) returns the value vj([x ,y ]), where [x ,y ]⊆ I ;

2 Cutj(x ,α) returns the value y ∈ [x ,1] such that vj([x ,y ]) = α.
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Fairness

Some classic requisites

Given an algorithm f for the cake-cutting problem, we define the
following qualities.

1 (Strong) proportionality:
“Each agent feels they got a fair share of the cake”

∀j ∈ [n],vi (Ai )≥ 1/n
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Fairness

Online fairness criteria

Lemma
No envy implies proportionality.

Lemma
No online cake cutting algorithm is proportional, envy-free, or
equitable

Proof.
Suppose some agent i leaves before agent n arrives. Ai is then
independent of vn. If vn(Ai ) = 1, agent n will not value any
allocation outside Ai . So, not proportional. Since no envy implies
proportionality, not envy-free either.

Suppose allocation was equitable, so all agents receive some cake
they value. Again, Ai is independent of vn for the first leaving
agent i .
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Fairness

Online fairness criteria
Online proportionality

Weak proportionality

Each agent j is assigned at least r/k of the total value of the cake
to their pieces where

1 r is the value of the remaining amount of unallocated cake
when agent j arrives;

2 k is the number of agents yet to be allocated cake at this
point.
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Fairness

Online fairness criteria
Online no envy

1 Weakly envy-free: agents do not value cake allocated to
agents after their arrival more than their own;

2 Immediately envy-free: agents do not value cake allocated to
any agent after their arrival and before their departure more
than their own

Lemma
No envy implies weakly envy-free. Weakly envy-free implies
immediately envy-free.
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Fairness

Online fairness criteria
Online equitability

First-come-first-serve
No agent’s value of their assigned share can decrease if they arrive
earlier in the input sequence and all other agents are left in the
same relative positions; formally defined as arrival monotone or

meta-envy).

More generally, “no agent can profit by a change in their arrival
order”

∀{i , j} ∈
(
[n]

2

)
,

vi (fi (v1, . . . ,vi , . . . ,vj , . . . ,vn))≥ vi (fj(v1, . . . ,vj , . . . ,vi , . . . ,vn))

Lemma
Equitability implies arrival monotonicity.
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Cut-and-choose

Cut-and-choose algorithm

Each application shall [...] allow two mining operations.
The Authority shall designate which part is to be reserved
solely for the conduct of activities by the Authority.
— UN Convention on the Law of the Sea
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Cut-and-choose

Cut-and-choose algorithm

Algorithm 1 I cut but you choose

1: procedure Cut-and-choose
2: for j = 1→ n−1 rounds do
3: The earliest arriving agent so far j cuts the remaining

cake once, creating two disjoint intervals X ,Y with X ⊔Y = Ij .
4: The second earliest arriving agent so far j +1 chooses

whether to take X and leave, or give X to the cutting agent
who leaves.

5: Ij+1← Y .
6: end for
7: The last remaining agent takes the leftover cake.
8: end procedure
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Cut-and-choose

Implementing cut-and-choose

Using Robertson-Webb oracles

Each iteration of the loop makes one oracle query to the Cut
oracle, and another to the Eval oracle, so overall query complexity
is Θ(n).
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Cut-and-choose

Fairness of cut-and-choose

Lemma
The online cut-and-choose procedure is weakly proportional and
immediately envy free. However, it is not weakly envy free,
equitable, truthful, or arrival monotonic.

Proof.
Suppose agent i cuts a slice ci . If allocated the slice, they would
want vi (ci )≥ r/k. But, if not allocated this piece, they would want
vi (ci )≤ r/k . Thus, the best option is to choose vi (ci ) = r/k .

By generalization, this holds for all i , so this is weakly proportional.
Also, trivially immediately envy-free.
Consider the following counter-example with 4 agents in the order
1→ 2→ 3→ 4 for the negative results.
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Cut-and-choose

Fairness of cut-and-choose (contd.)

Proof.

0.25 0.5 0.75 1

0.11

1

2.67

x

f1
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Cut-and-choose

Fairness of cut-and-choose (contd.)

Proof.
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Cut-and-choose

Fairness of cut-and-choose (contd.)

Proof.
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Cut-and-choose

Fairness of cut-and-choose (contd.)

Proof.
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Cut-and-choose

Limitations of cut-and-choose

In addition to the negative results mentioned above...

1 We must know n, i.e., the total number of agents partaking in
the cake. If n is unknown to the algorithm, then the last
agent will be forced into a deadlock.

2 Each agent may have to wait an unspecified amount of time
until the next agent shows up, or until they can finally leave
with a slice of cake.

3 In particular, since cut-and-choose is not arrival monotone,
every agent will prefer to be the second agent instead of the
first.
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Discounted cut-and-choose

Discounted cut-and-choose

Additional assumptions

1 Each agent j ∈ [n] has some discount factor δj .
2 We also have a maximum patience T > 0 which is common

for all agents.
3 We have a clock available near the cake, so each agent can

note their arrival time.
4 We have a counter near the cake, which each agent, upon

their arrival, presses to increment by one.
5 The total number of agents is unknown to all agents (and to

the algorithm), but the maximum possible number is n.

Arrival distribution
In particular, it is reasonable to assume that the arrival of agents is
given by some truncated Poisson distribution with some parameter
λ . Let λ be given.
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Discounted cut-and-choose

Preliminary results

Lemma
For any interval of duration T , the probability of an agent arriving
in this interval is λT +h(T ), where h(T )→ 0 as T → 0.

Let T be such that λT is sufficiently large.

Notation
Define Si ,j for i , j ∈ [n] as

Si ,j =
(1−δj)δ

n−1−i
j

2−δj −δ
n−i
j
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Discounted cut-and-choose

Modified algorithm

Outline
When each agent j arrives...

1 They note the number of agents already arrived and increment
the counter, say it now reads k . First, suppose k ̸= n.

2 If there is an agent already waiting, after having cut C ′ and
left C , agent j chooses the slice C ′ when vj(C

′)≥ δjSk,jvj(C ).
3 If there is no agent waiting, agent j cuts a slice C ′ from the

remaining cake C s.t. vj(C
′) = Sk,jvj(C ). They then wait for

time T .
4 If no agent arrives in this duration, agent j runs off with C ′.
5 If another agent arrives, then the procedure restarts

accordingly.
6 If k = n and no agent waiting, then run off with the cake!
7 If an agent is waiting, then agent j chooses a slice greedily.
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Discounted cut-and-choose

Fairness and limitations

Theorem
The above procedure is immediately envy free, arrival monotone,
and truthful. It is not weakly envy free or equitable.

Limitations
1 Nefarious agents may be encouraged to leave before time T

has passed.
2 Nefarious agents may delay cutting the cake until very little of

the duration T remains.
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Online moving knife

1 several rounds of cutting (n−1 rounds for minimal cutting)

2 in each round, the algorithm moves a knife from the left to
the right, and only stops when some agent declares it to stop

3 at that point, the algorithm cuts the cake and that agent
leaves with their share of cake, i.e., the part to the left of the
cut.
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Offline Dubins-Spanier in Robertson-Webb

Algorithm 2 Offline Dubins-Spanier

1: procedure Dubins-Spanier
2: x1← 0; I1← [x1,1]; S1← [n].
3: for j = 1→ n−1 rounds do
4: i∗← argmin{Cuti (xj ,1/n) : i ∈ Sj}
5: xj+1← Cuti∗(xj ,1/n)
6: Allocate [xj ,xj+1] to agent i∗.
7: Ij+1← [xj+1,1]; Sj+1← Sj \{i∗}.
8: end for
9: The last remaining agent takes the leftover cake.

10: end procedure



Introduction The problem setting Algorithm 1 Algorithm 2 Wrapping up

Online Dubins-Spanier

Briefly...

1 Given k < n, start a moving knife procedure with the first k
agents.

2 At the end of the procedure, if the last agent is yet to come,
then wait for the next agent and restart the procedure with k
agents again.

3 If there are no more agents to come, restart with k−1 agents.
Repeat until only one agent remains. Allocate the remainder
of the cake to that agent.

Lemma
The online moving knife procedure is weakly proportional and
immediately envy free. However, it is not (weakly) envy free or
arrival monotonic.
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Dubins-Spanier procedure
Generalized Dubins-Spanier Theorem.

Theorem
Consider a set S and n agents, and let U be a σ -algebra on S .
Suppose each agent j has a countably-additive and nonatomic
value measure vi : U→ R. Let K be a k-partition of S . Then, the
set of all n×k matrices [M]ij is a compact and convex set in the
space of all real-valued n×k matrices.
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Competitive analysis

Competitive analysis

Utilitarian measure
Consider the objective function given by

obj(f ) =
1

∑j vj(Aj)
.

Then, since v1(A1)≥ 1
n , it follows that ∑j vj(Aj)≥ 1

n .
For any offline algorithm, the sum cannot exceed n, since
vj(Aj)≤ 1 for all j ∈ [n].
The competitive ratio is then O(n2). We can construct examples
to show tightness.



Introduction The problem setting Algorithm 1 Algorithm 2 Wrapping up

Competitive analysis

Competitive analysis

Utilitarian measure
Consider the objective function given by

obj(f ) =
1

∑j vj(Aj)
.

Then, since v1(A1)≥ 1
n , it follows that ∑j vj(Aj)≥ 1

n .

For any offline algorithm, the sum cannot exceed n, since
vj(Aj)≤ 1 for all j ∈ [n].
The competitive ratio is then O(n2). We can construct examples
to show tightness.



Introduction The problem setting Algorithm 1 Algorithm 2 Wrapping up

Competitive analysis

Competitive analysis

Utilitarian measure
Consider the objective function given by

obj(f ) =
1

∑j vj(Aj)
.

Then, since v1(A1)≥ 1
n , it follows that ∑j vj(Aj)≥ 1

n .
For any offline algorithm, the sum cannot exceed n, since
vj(Aj)≤ 1 for all j ∈ [n].

The competitive ratio is then O(n2). We can construct examples
to show tightness.



Introduction The problem setting Algorithm 1 Algorithm 2 Wrapping up

Competitive analysis

Competitive analysis

Utilitarian measure
Consider the objective function given by

obj(f ) =
1

∑j vj(Aj)
.

Then, since v1(A1)≥ 1
n , it follows that ∑j vj(Aj)≥ 1

n .
For any offline algorithm, the sum cannot exceed n, since
vj(Aj)≤ 1 for all j ∈ [n].
The competitive ratio is then O(n2). We can construct examples
to show tightness.



Introduction The problem setting Algorithm 1 Algorithm 2 Wrapping up

Variations

Truthfulness

Existing work

There exist deterministic non-minimal cutting algorithms which
guarantee truthfulness. There also exist randomized minimal
cutting algorithms guaranteeing truthfulness.

There are also several
negative results for deterministic truthful (online) cake-cutting.

Open question

With what restrictions can we sacrifice randomness without losing
minimalism?

Wikipedia page has a nice summary!
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Variations

Collusion

Walsh and other papers also look at cases where agents can fix
strategies amongst themselves, colluding to get more valuable
pieces of cake. In particular, the online-cut-and-choose protocol is
resistant to collusion, but the online Dubins-Spanier is not.
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Variations

Other query models

Simultaneous encoding

All agents succinctly report their discretized value allocations on
arrival. This helps with moving from query complexity to space
complexity.



Introduction The problem setting Algorithm 1 Algorithm 2 Wrapping up

Variations

More variations of resource allocation

1 Multi-cake

2 Homogeneous goods

3 Indivisible goods

4 Combinatorial auctions
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Ending
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The End

Questions? Comments?
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