
Continuous functional calculus

These notes were compiled for self-reflection only, so that I can look back at this proof in the
future. Please excuse the lack of quality as these notes haven’t been scrutinised thoroughly,
and please suggest making corrections if you see any errors.

These notes were based on some early sections in [Str20].

1 Motivating example

The goal of continuous functional calculus is to express a continuous function on a C∗-
algebra in terms of the spectra of the elements in the C∗-algebra. Since this goal might seem
rather abstract and impractical, here is an example of an application of such a technique. In
this example, we consider the problem of exponentiating a normal matrix T ∈ Mn(C), i.e.,
compute f(T ) := exp(T ).

Recall that f(z, z) = exp(z) has the uniform limit pm ⇒ f , where, for all m ∈ N, pm(z, z) =∑m
k=0

1
k!
zk ∈ C[z, z]. To carry this forth to a operator on a C∗-algebra A, we seek for A

to be commutative, analogous to the commutativity of C[z, z]. Moreover, we wish for the
construction to be equivalent to replacing z with T and z with T ∗. As such, a sufficient
condition to assume is that T is normal, and simply consider C∗(T, Idn) ⊆ MN(C), which
would then be commutative.

Now, using the results of continuous functional calculus, we wish to write

f(T ) = exp(T ) = lim
m
pm(T )

= lim
m

∫
sp(T )

pm(λ)dδλ (by spectral mapping theorem)

=

∫
sp(T )

lim
m
pm(λ)dδλ (uniform convergence)

=
n∑
k=1

lim
m
pm(λk)vkv

∗
k (spectral theorem for normal matrices)

=
n∑
k=1

exp(λk)vkv
∗
k

2 Overview

Recall that the Stone-Weierstraß theorem allows us to express any continuous function f
with compact support as the uniform limit of a sequence of polynomials. Thus, for our
purposes, it suffices to construct polynomials over a algebra (a commutative algebra, to be
precise, for the same reasons encountered in our example).

Throughout this note, we have the following standing assumptions. Let A be a unital C∗-
algebra, and suppose a ∈ A is normal (aa∗ = a∗a). Let A0 = C∗(a, 1A) denote the unital
C∗-subalgebra generated by a and 1A. Since A0 = cl(span{an(a∗)m : m,n ∈ N}), it follows
that A0 is commutative (where cl(X) denotes the norm closure of X).
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Continuous functional calculus

As a remark, we reserve the term ‘functional’ for when a map f has (some subset of) C as its
codomain. We denote by C(X) the set of all continuous functionals on a Hausdorff space X,
equipped with a norm. Similarly, we denote the set of all continuous functionals with compact
support by C0(X) ⊆ C(X). When X itself is compact, it follows that C0(X) = C(X). Note
that C0(X) is always a C∗-algebra under the operator norm.

3 The details

3.1 Characters

Definition 3.1 (Character). A character τ on A0 is a non-zero unital algebra homomorphism
τ : A0 → C. Denote the space of all characters on A0 by Ω(A0).

In other words, given some τ ∈ Ω(A0), we must have τ(b1+ b2) = τ(b1)+τ(b2) and τ(b1b2) =
τ(b1)τ(b2), and there exists some b ∈ A0 such that τ(b) ̸= 0. Henceforth, we use the
shorthand Ω to denote Ω(A0).

Note that, once you specify how some τ ∈ Ω acts on a by setting some τ(a) = ζ ∈ C,
then you specify the behaviour of τ on all of A0. To prove this fact, first observe that
τ((c+ id)∗) = τ(c+ id) for all self-adjoint c, d ∈ A0.

We shall also take as a fact that Ω is a non-empty compact Hausdorff space; in particular,
C(Ω) = C0(Ω). Some more useful results are as follows.

Lemma 3.1. Given any b ∈ A0 and any τ ∈ Ω, we have sp(b) = {τ(b) : τ ∈ Ω(A)}.

Proof. We only prove the ⊇ inclusion here. Suppose, for contradiction, that τ(b) /∈( b) for
some τ . Then, there exists some c ∈ A0 such that (b− τ(b)1A)c = 1A. Since τ is a character,
we get the contradiction

1 = τ(1A) = τ((b− τ(b)1A)c) = τ((b− τ(b)1A))τ(c) = (τ(b)− τ(b))τ(c) = 0.

The reverse inclusion requires some more abstract algebra, which we needn not worry about.
■

Lemma 3.2. Given any τ ∈ Ω, we have ∥τ∥ = 1 in the operator norm.

Proof. Consider some b ∈ A0 with ∥b∥ ≤ 1. Recall that r(b) = sup{|λ| : λ ∈ sp(b)} ≤ ∥b∥,
with equality holding precisely when b = b∗ is self-adjoint. Since τ(b) ∈ sp(b) from the
previous lemma, we get τ(b) ≤ ∥b∥ ≤ 1. Thus, ∥τ∥ = sup{|τ(b)| : ∥b∥ ≤ 1} ≤ 1; since
τ(1A) = 1, we have equality. ■

We shall revisit character spaces once we have defined the Gelfand transform in the following
section.
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3.2 The (first) Gelfand-Naimark theorem

In this next section, we see a characterisation of commutative C∗-algebras A0, where we
show they are always ∗-isomorphic to C0(X), for some desired space X.

Definition 3.2 (Linear functionals). Given a unital C∗-algebra A, let A∗ := {ϕ : A → C |
ϕ is linear} denote the set of all linear functionals on A.

We shall claim, without proof, that A∗ separates points in A. In other words, for any distinct
b1, b2 ∈ A, there is some ϕ ∈ A∗ such that ϕ(b1) ̸= ϕ(b2).

Definition 3.3 (Gelfand transform). The Gelfand transform is the map Γ : A0 → C0(Ω)
given by b 7→ b̂|Ω. Here, b̂ : A∗

0 → C is defined by b̂(ϕ) = ϕ(b) for any linear functional
A∗

0 ∋ ϕ : A0 → C.

For convenience, we use the shorthand b̂ to denote b̂|Ω. We call the function b̂ the Gelfand
transform of b. Here are some useful properties of the Gelfand transform.

Lemma 3.3 (Gelfand representation). The Gelfand transform is a ∗-homomorphism, i.e.,
the following properties hold.

1. b̂1 + b2 = b̂1 + b̂2;

2. b̂1b2 = b̂1b̂2;

3. b̂∗ = b̂
∗
.

Proof. The proof is by direct computation. Let τ ∈ Ω be arbitrary.

1. b̂1 + b2(τ) = τ(b1 + b2) = τ(b1) + τ(b2) = b̂1(τ) + b̂2(τ);

2. b̂1b2(τ) = τ(b1b2) = τ(b1)τ(b2) = b̂1(τ)b̂2(τ) = (b̂1b̂2)(τ);

3. b̂∗(τ) = τ(b∗) = τ(b) = b̂(τ) = b̂
∗
(τ).

■

Theorem 3.1. For any b ∈ A0, we have r(b) = ∥b∥ and sp(b) = {b̂(τ) : τ ∈ Ω}.

Proof. We have ∥b̂∥ = sup{|b̂(τ)| : ∥τ∥ = 1}. Using Lemma 3.1, Lemma 3.2 and b̂(τ) = τ(b),
this yields ∥b̂∥ = sup{|τ(b)| : τ ∈ Ω} = sup{|λ| : λ ∈ sp(b)}. The second statement is a
rewording of Lemma 3.1. ■

As a corollary, we also note that the Gelfand transform is norm-decreasing. However, we
can get an even better result!

Lemma 3.4. The Gelfand transform Γ : b 7→ b̂ is isometric (i.e., norm-preserving).

Proof. Note the following computation

∥b̂∥2 = ∥b̂∗b̂∥ = ∥b̂∗b∥ = r(b∗b) = ∥b∗b∥ = ∥b∥2.
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■

Finally, we have all the pieces required to assemble the Gelfand-Naimark theorem for com-
mutative C∗-algebras.

Theorem 3.2 (Gelfand-Naimark). The map Γ is an isometric ∗-isomorphism.

3.3 Continuous functionals of characters

With the Gelfand transform as a tool, let’s go back to character spaces to construct a
homeomorphism Ω → sp(a).

Theorem 3.3. The Gelfand transform of a, i.e. â : Ω → sp(a), given by â(τ) = τ(a) is a
homeomorphism (i.e. a continuous bijection with continuous inverse).

Proof. That â is a bijection follows from the identification in Lemma 3.1; thus we also
conclude the existence of the inverse map. Continuity of â follows from its linearity. Since
Ω is compact, the inverse Gelfand transform maps compact sets onto compact sets, and is
hence, itself continuous. ■

We can then lift this homeomorphism h = â to a ∗-isomorphism on the algebras of continuous
functionals, where we simply pull back a function via h. More precisely, we express

Lemma 3.5. There exists a ∗-isomorphism ψ : C(sp(a)) → C(Ω) given by ψ : f 7→ f ◦ h.

The proof can be obtained by observing the following diagram of how ψ(f) is computed for
all f ∈ C(sp(a)).

h f
Ω sp(a) C

3.4 Putting it together

Here is a picture of what we have developed so far.

Γ ψ
C∗(a, 1A) C(Ω(C∗(a, 1A))) C(sp(a))

Theorem 3.4 (Continuous functional calculus). Given a unital C∗-algebra A, and a normal
a ∈ A, there exists an isometric (norm-preserving) ∗-isomorphism

γ : C(sp(a)) → C∗(a, 1A); γ : Id 7→ a.

Proof. Define γ := Γ−1 ◦ ψ, as the composition of two isometric ∗-isomorphisms. [Alterna-
tively, consider f : sp(a) → C given by f(z) = z. Then, C(sp(a)) is generated by f , and
γ is the unique unital ∗-homomorphism such that γ(f) = a, proving injectivity. Since γ(f)
generates A0 = C∗(a, 1A), γ is surjective onto A0 – an isomorphism!] ■
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Often, for any f ∈ C(sp(a)), we use the shorthand f := γ−1(f) to reuse the same function
symbols for the sake of sanity. Indeed, this is sensible due to the following argument. If
p ∈ C[z, z] is a polynomial, then using p(a, a∗) ∈ A0, by definition of A0. Using Stone-
Weierstraß for complex numbers, polynomials of this form are dense in C(sp(a)), so for any
f ∈ C(sp(a)), we can define f(a) := γ(f)

As a corollary, we also obtain the spectral mapping theorem.

Theorem 3.5. If a ∈ A is normal and f ∈ C(sp(a)), then f(a) ∈ C∗(a, 1A) ⊆ A is normal
and sp(f(a)) = f(sp(a)).
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